Searches for New Physics with High Energy Colliders

Emmanuel Sauvan CPPM Marseille

The Beyond the SM Landscape

The Standard Model

- SU(3)_c x SU(2)_L x U(1)_Y
- The Higgs mechanism
- 3 generations of quarks and leptons
- The Poincaré group
- In 4 dimensions

Test Beyond the SM hypotheses

- New substructures ? (compositness)
- quarks ⇔ leptons (Lepto-quarks ?)
- Enlarge the gauge group (Z', W'?)
- Alternative EWSB mechanisms
- A 4th dimension?
- Extend Poincaré → Supersymmetry
- (...)

Test the SM

- → BSM-independent
- New resonances ?
- Topologies with low SM background
- Topologies with specific particle(s)
- General searches

The Experimental Tools

→ Present and past colliders at the energy frontier

- \sqrt{s} = 210 GeV,
- ~ 0.9 fb⁻¹ / exp.
- Results still complementary

- $\sqrt{s} = 320 \text{ GeV}$,
- $\sim 0.5 \text{ fb}^{-1} / \text{ exp.}$
- Stopped mid-2007

- $\sqrt{s} = 1.96 \text{ TeV}$,
- Up to ~ 4 fb⁻¹ in analyses
- ~ 6 fb⁻¹ on tape

Deeper into Matter Structure

- Nepeat the history: diffusion of point-like particles on matter
- Atom → Nucleus → Nucleon → Quark (→ ?)
 - → DIS scattering of e on q

Neutral Current (ep \rightarrow eX) **H1** H1 HERA I+II e⁺p (prel.) H1 HERA I+II e p (prel.) H1 2000 PDF e⁺p H1 2000 PDF e⁻ p (a) 10⁻¹ 10-2 10⁻³ 10-4 10⁻⁵ 10⁻⁶ 10³ Q^2 (GeV^2) → A finite size of quarks EW charge distribution

$$\frac{d\sigma}{dQ^2} = \frac{d\sigma^{SM}}{dQ^2} \left(1 - \frac{R_q^2}{6}Q^2\right)^2$$

$$Arr$$
 Rq < 0.74 10⁻¹⁸ m (H1)

Compositness

- A direct manifestation of new substructures
 - → Existence of fermion excited states
 - → Searches via decays to fermion+ boson
- ep colliders well suited

Search for v* at HERA (e p, 184 pb 1)

- → A complete scan performed by H1 at HERA, using all data
- → v*, e* and q* searched for

H1

 $f/\Lambda = 1/M_{V}*$

v* Mass [GeV]

- Year I*: HERA has the best sensitivity in $\int s_{LFP} = 200 < M_{I*} < 300 GeV$
- ▶ For q*: complementary to Tevatron for small fs

[H1, PLB 663 (2008) 382] [H1, PLB 666 (2008) 131] [H1, PLB 678 (2008) 335]

 $f = f', f_{c} = 0$

 $f/\Lambda = 1/M_{a*}$

q* Mass [GeV]

H1

r / ^ [GeV⁻¹]

10⁻²

10⁻³

Lepto-quarks

- Leptoquarks: connect lepton and quark sectors
- F = L+3B $\beta = BR(LQ \rightarrow eq)$
- HERA was ideal to search for 1st generation LQs
 - → Single production possible up to the kinematic limit
 - → Look for lepton-quark resonances in e+jet, v+jet
 - → Sensitivity via u-channel beyond 320 GeV

100

SM Uncertainty

150

200

250

300

M_{IO} / GeV

Leptoquarks at the Tevatron

[arXiv:0907.1048]

- Searches for pair production
 - \rightarrow No sensitivity to λ
- All 3 LQs generations accessible
- Now stringent limits on 1st generation LQs
 - → Searches performed in ej ej and ej MET+j
 - \rightarrow Lower sensitivity for small β

Limits for scalar LQs masses (in GeV):

β	scalar	
0.1	235	
0.5	284	
1	299	

2nd and 3rd generation Leptoquarks

• 2^{nd} : Searches in the $\mu j \mu j$ and μj MET (D0)

[D0, PLB 671(2009)224] [D0, PLB 668(2008)357]

	central theory		
β	$M_{LQ}^{ m obs}$ (GeV)	$M_{LQ}^{ m exp}$ (GeV)	
0.1	185	181	
0.5	270	272	
1	316	316	

 \rightarrow For β =0: M_{LQ} >214 GeV

- → Charge 4/3, β (LQ → τ b) =1, M_{10} > 210 GeV
- → Charge 1/3, β (LQ → ν b) =1, M_{LO} > 252 GeV

SuperSymmetry

- Relates fermion
 ⇔ bosons → 1 supersymmetric partner for each SM particle
- New quantum number: R-parity, Rp = (-1) ^{3(B-L)+2S}
- Superpartners should be heavy (not observed)
 → SUSY is broken
- Minimal field content of the MSSM (Minimal SUSY):

spin 0	spin 1/2	spin 1
squarks: $ ilde{q}_R$, $ ilde{q}_L$	$oldsymbol{q}$	
	gluinos: $ ilde{m{g}}$	$oldsymbol{g}$
sleptons: $ ilde{\ell}_R$, $ ilde{\ell}_L$	$\boldsymbol{\ell}$	
h, H , A	neutralinos: $ ilde{\chi}^0_{i=1-4}$	$oldsymbol{Z}^0$, $oldsymbol{\gamma}$
H^\pm	charginos: $ ilde{\chi}_{i=1-2}^{\pm}$	W^{\pm}

- → A priori > 100 parameters
- → Need to define a specific breaking scheme

Some SUSY models

- mSUGRA: gravity mediated SUSY breaking
 - $\rightarrow M_0$, $m_{1/2}$, A_0 , tan β , sign(μ)

- Rp conserved
 - → SUSY particles pair-produced
 - → Cascade decay to the lightest sparticle (LSP)
 - → If LSP = neutralino → Missing transverse energy (MET)
- Rp not conserved
 - → Single production of sparticles possible
- GMSB: gauge mediated SUSY breaking
 - → The LSP is a light gravitino
 - → The phenomenology depends and the next-to-LSP and its lifetime

M₀: common scalar mass at GUT scale

 $M_{1/2}$: common gaugino mass at GUT scale

 $sign(\mu)$: sign of higgsino mass parameter

tan β : ratio of Higgs vev's

 A_0 : common trilinear coupling at GUT scale

Squarks and gluinos

[D0, PLB 660 (2008) 449]

[CDF, PRL 102 (2009) 121801]

One of the main stream at the Tevatron:
 squarks and gluinos produced via strong interaction

→ Signature: 2-4 jets + MET

→ Large cross section, large background

→ gluinos: m > 208 GeV (CDF), 308 Gev (D0) (for all squarks masses)

→ squarks: m >380 GeV (CDF, D0) (for all gluinos mass)

→ In mSUGRA: regions not accessed by LEP excluded

Stop

- Stop and sbottom expected to be light
- ullet For light stop $ilde t o t + ilde \chi_1^0$ not allowed
 - Dominant decay mode depends on other SUSY masses
 - ullet If stop is next-to-LSP: $ilde{t}
 ightarrow c + ilde{\chi}_1^0$

 New CDF analysis exploiting charm tagging (reduces background from bottom jets)

Stop searches in the di-lepton channel

- If sneutrinos lighter than stop: dominant decay $ilde t o b + \ell + ilde
 u$ with $ilde
 u o
 u + ilde \chi_1^0$
 - → Signature similar to tt di-leptons but with soft leptons and different kinematics
 - \rightarrow Most sensitive channel: 2b + e + μ + MET

D∅ Preliminary Result

- D0: 3.1 fb⁻¹, $e\mu$ channel only
- CDF: 1.1 fb⁻¹, all channels
 - Difficult backgrounds: QCD multi-jets, lepton+fake, similar topologies (Z → ττ, tt, WW)
 - → Exlusion limits above top mass: M(stop) > 180 - 200 GeV

Stop searches in top-like events

[D0, PLB 674(2009)4]

• If chargino is lighter than stop: top-like decays dominant

$$ilde t o b ilde \chi^+ o b \ell
u ilde \chi^0$$

- → Search stop in lepton+jet top sample (D0)
- → Search stop in top di-lepton sample (CDF)
- → Differences in mass distribution of stop and kinematics
- ullet Extract limits in 3D-space: $m_{ ilde{t}}, m_{ ilde{\chi}_1^\pm}, m_{ ilde{\chi}_1^0}$

Sbottom

- At large tan β , sbottom may the lightest colored particle
- ullet Decay: $ilde{m{b}}
 ightarrow m{b} + ilde{\chi}_1^0$
 - → 2 b-jets + MET
 - $m{ ilde{b}}$ Visible energy in the event depends on $ilde{b}- ilde{\chi}^0_1$ mass difference Δm

→ sbottom up to masses ~ 250 GeV are excluded

Sbottom: an alternative way

[CDF, PRL 102(2009)221801]

• If sbottom is light enough, it will be produced via gluino decay

 For similar masses gluino cross section is larger than sbottom cross section

- → Low background signature
- → But large model dependences
- → Dependence on gluino mass
 - Competitive results for M(gluino) ~ M(sbottom)

Search for Charginos and Neutralinos

[arXiv:0901.0646]

ullet One of the golden channel at Tevatron for SUSY: $ilde{\chi}^\pm \ ilde{\chi}^0_2 o 3\ell + MET$

→ Cross section (EW) relatively small

- \rightarrow Low P_T leptons
- → But clean signature: 3 leptons+ MET

 \rightarrow Sensitivity degrades with increasing tan β

Rp-Violating SUSY at the Tevatron

- If RpV, resonant production of sneutrino possible
 - \rightarrow Very clean topologies: 2 isolated leptons e μ , e τ , $\mu\tau$
 - \rightarrow Low SM background (WW, $Z/\gamma^* \rightarrow \tau\tau$)
- D0: eμ channel with 4.1 fb⁻¹
- CDF: 1 fb⁻¹ only but $e\tau$ and $\mu\tau$ also investigated
 - Limits beyond LEP results

100

200

M_{eu}(GeV)

Rp-Violating SUSY at HERA

- If RpV, resonant production of squarks possible at HERA
- $\lambda'_{1j1} \qquad \tilde{u}_L^j \qquad \lambda'_{11k} \qquad \tilde{d}_R^k \qquad \cdots$
- e-j, v-j decays and cascade decays via gauginos
 → Many topologies to search for
- Limits derived on squark mass and λ'_{1j1} and λ'_{11k} with j,k=1,2

- For $\lambda' = 0.3$ u-type squarks excluded up to 275 GeV
 - → d-type squarks up to 290 GeV

GMSB SUSY: in $\gamma\gamma$ + MET

[D0, PLB 659(2008)856]

• In GMSB, usually, allows neutralino decay in a photon and a gravitino (LSP)

$$ilde{\chi}_1^0
ightarrow \gamma ilde{G} ~~(au_{ ilde{\chi}_1^0} < 2 \; ext{ns})$$

 \rightarrow Final states with 2 γ + MET

$$m(ilde{\chi}_1^0) > 125$$
 GeV $m(ilde{\chi}_1^\pm) > 229$ GeV

$$m(ilde{\chi}_1^0) > 149~{
m GeV}~(au_{ ilde{\chi}_1^\pm} = 0~{
m ns})$$

Large Extra Dimensions?

[CDF, PRL 101(2009)181602]

 If gravity propagates in 4+n dimensions, the fundamental Planck scale M_n could be small

$$M_{Pl}^2=8\pi R^n M_D^{n+2}$$

- Real graviton emission the Tevatron:
 - → $g + G_{KK} \Rightarrow mono jet +MET$

$$\rightarrow \gamma + G_{KK} \Rightarrow \gamma + MET$$

- → Directly sensitive to M_D
- CDF: combine both, D0 only γ
- Lower limits on M_D in GeV:

\overline{n}	CDF	D0
2	1400	970
6	940	831

Indirect LED Searches at the Tevatron

[D0, PRL 102(2009)051601] [arXiv:0906.4819]

- Virtual KK gravitons exchange
 - → Enhancement of the production of fermion or boson pairs
 - → the Drell-Yann or di-photon cross sections
 - → di-jets
- Sensitivity on the effective Planck scale
 Ms (ultraviolet cutoff)
 - ▶ D0: combining di-e and di- γ : Ms > 1.62 TeV (GRW formalism)
 - ▲ CDF: di-jets:

 Ms > 1.66 TeV (GRW)
 - → Uses jet angular distributions $\chi = \exp(|y_1-y_2|)$

Indirect LED Searches at HERA

At HERA: graviton exchange can affect eq → eq scattering

→ Contact interaction term with an effective coupling:

$$\eta_G = rac{\pm 1}{M_s^2}$$

→ Look for deviations in the ep NC DIS cross section

Limit from all ZEUS data: $Ms(\pm 1) = 0.94 \text{ TeV}$

Signature Based Searches

- Facing the large variety of BSM models
 - → Tendency to develop more general signature based searches
 - → Different possible BSM interpretations of a same signal
 - Look for new narrow resonances
 - Topologies with low SM expectation
 - Topologies specific particles
 - More general: all possible final states ...

ee resonance → new Z' boson ?

Di-muon resonances

[CDF, PRL 102(2009)031801]

 Use m⁻¹ for a constant resolution

- → Data well described
- → Z' excluded up to 1030 GeV
- → Limits set also on other models

- Investigate the di-jet distribution
- Poorer resolution than for leptons
- Large QCD background
 - Good agreement with NLO pQCD predictions
 - → Excited quarks excluded up to 870 GeV (f=f'=fs)
 - → W' up to 840 GeV
 - → Z' up to 740 GeV

Heavy resonances: X → VV

- Search for X → WW/WZ → (ev)(jj) by CDF
- Analysis based on SM di-boson production studies
 - → Look for possible excess (e + 2 jets + MET)
- Selection: → W → ev with 2 solutions
 - → di-jets in [65,95] for WW
 - → di-jets in [70,105] for WZ

- → Small fluctuation in WW at ~ 600 GeV
- → Limit set within different models

Isolated Leptons at HERA

[ZEUS, PLB 672(2009)106] [arXiv:0901.0488]

SM W: $\sigma \sim 1.3 \text{ pb}$

 \rightarrow H1, for $P_T^X > 25$ GeV, in e+p only

an excess of data events (2.4 σ)

→ Not confirmed in ZEUS analysis

H1+ZEUS combined data: 0.98 fb⁻¹

• For $P_{\tau}^{X} > 25 \text{ GeV}$, in e+p:

> data/SM: 23 / 14.02 ± 1.94

 \searrow In e+p: 1.9 σ positive fluctuation of data, driven by H1 events

Multi-Leptons at HERA

[arXiv:0907.3627]

- Low and well controlled SM contribution
- Mainly produced via γ - γ in the SM
- Look for events with at least 2 isolated high- P_T leptons (e, μ)
 - → ee, eee, eμ, μμ, eμμ
- H1+ZEUS combined analysis (0.94 fb⁻¹)
 - $\rightarrow \Sigma P_T$: hardness of the events

- \rightarrow Striking events observed for $\Sigma P_T > 100$ GeV by H1 and ZEUS
- → Only in e+p: 7 / 1.94 ± 0.17

ightharpoonup Probability of 0.4% (2.6 σ)

Signature Based Searches with Photons

[arXiv:0906.0518] [arXiv:0905.0231]

- Various topologies with high P_T photons investigated by CDF
 - → Model independent
- $\gamma \gamma$ + X, X = e, μ , τ , γ , MET with up to 2 fb⁻¹
- lepton +γ + b-jet + MET

# events	$e\gamma b {f E}_{T}$	$\mu\gamma b E_T$	$(e+\mu)\gamma b \mathbf{E}_T$
Predicted	18.4 ± 2.4	12.6 $^{+1.9}_{-1.6}$	31.0 $^{+4.1}_{-3.9}$
Observed	16	12	28

• γ + jet + b-jet + MET → 617 (obs.) / 607 ± 114 (exp.)

> ▲ All consistent with SM expectations

General Searches

- ► The most general signature based search: investigate ALL possible topologies
- Search for deviations to the SM in many (all) final states
- Independent of any BSM assumptions: no specific selections
 - → More general
 - → Lower sensitivity than dedicated searches
- Allow a statistical quantification of observed discrepancies
- Performed by H1, CDF and D0, using different strategies

General Search at HERA

[H1, PLB 674(2009)257]

Investigate all high P_T topologies

- Pioneered by H1,
 full HERA data, 463 pb⁻¹
- Isolated particles
 - \rightarrow e, γ , μ , jet, ν
- A common phase space
 - → P_Tpart > 20 GeV
 - → 10 < θ part < 140 deg.
- → Good agreement with SM in most classes
 - ► Good understanding of the detector and of SM processes

General Search at HERA -II-

[H1, PLB 674(2009)257]

• Look for regions of data/SM discrepancies in 1D distributions:

$$\rightarrow \Sigma P_T$$
, M_{all}

→ Topological variables: angle and energy sharing

- \ Largest deviation observed in e+p, in e-e channel for M_{all} (~2.5 σ)
- ▶ Global probability to observe such deviation in one of the channels: 12%

General Search at the Tevatron

[CDF, PRD 79(2009)011101]

- Also performed by CDF and D0
 - → A common framework used by CDF and D0
 - → CDF: all topologies (399)
 - → D0: only topologies with 1 lepton (180)

- Adjust the SM simulation to data at low energies
 - → O(40) k-factors used, determined in a dedicated algorithm
 - → Check data/SM discrepancies at high energies

General Search at the Tevatron

[CDF, PRD 79(2009)011101]

Check data/SM in rate and shape of distribution

• Look for bumps in $\Sigma P_{\scriptscriptstyle T}$ distributions

Most significant discrepancies found: attributed to QCD and detector simulation deficits

Summary

- Beyond the SM: we are searching for the unknown ...
 - → A large variety of possibles searches
- A large domain already explored using high energy colliders
 - → Following model hints
 - → More generic tests of the SM validity

- Yet, no evidence for new physics at colliders
- Soon, a new tool for physicists to play with: the LHC
 - → Should open new windows on our universe

