A general search for new phenomena at HERA **H1 Collaboration** DIS 2007 April 16-20, 2007, Munich, Germany **Emmanuel Sauvan** #### The 2 ways of searches - Look for predicted signatures of BSM models - → Adapt an analysis for each exotic prediction - ▲ Larger sensitivity - Look for deviations to the SM in its tails: investigate all possible high P_T topologies - Greater generality - → Signature based - → Also look for the unexpected - → Minimise the probability of missing something - Developed by H1 for HERA I data [PLB 602, 14 (2004)] - Requires a very good understanding of detector and SM processes #### The analysis strategy - Isolated high P_T particles: e, γ , μ , jet and ν - → Tight identification criteria based on detector performances - A common phase space: - → P_Tpart > 20 GeV - \rightarrow 10 < θ part < 140 degrees - $\rightarrow D_{part} n \varphi > 1$ - Classification of events into exclusive channels (>=2 particles) (e-j, j-j, j- ν , e-j-j, ...) - Look for possible deviations in Σ P_T and M_{all} distributions - Determine statistical significance of largest deviations observed ▶ New analysis based on the full H1 HERA II data set: 337 pb⁻¹ #### SM processes - → Need simulation of all ep processes - → Large MC statistic required (multi-particle classes) - Neutral Current DIS ep o eX • Charged Current DIS ep o u X • Photoproduction $\gamma p \to X$ \rightarrow QCD processes: O(α_s) + PS ullet QED Compton $ep o e \gamma X$ • Lepton pair production ep o ell X • W production $ep \rightarrow eWX$ QED processes: $O(\alpha^2) + PS$ ## **Event yields** ▶ Good agreement with SM in most classes #### Search for deviations - ▶ Identify regions of largest deviations between data / SM - Investigate 1D Σ P_T and M_{all} distributions - Probability p of up or down fluctuations in each regions: $$p = \begin{cases} A \int_0^\infty db \, G(b; N_b, \delta N_b) \sum_{i=N_{obs}}^\infty \frac{e^{-b}b^i}{i!} & \text{if } N_{obs} \geq N_b \\ A \int_0^\infty db \, G(b; N_b, \delta N_b) & \sum_{i=0}^{N_{obs}} \frac{e^{-b}b^i}{i!} & \text{if } N_{obs} < N_b \end{cases}$$ (A = normalisation constant) Most interresting region: p minimum -> p_{min}^{data} ## Σ P_T and M_{all} distributions: e+p - → A systematical scan of all classes - → Classes with Nb jets >= 4 are not considered ## Σ P_T and M_{all} distributions: e-p - → Some regions with deviations found - → Are they significant? ## Quantify the deviation - A Quantify the significance of each deviation found - What is the probability (\hat{P}) to observe somewhere else in the histogram a region with $p < p_{min}^{data}$? - \rightarrow Pull random histograms H_{ran} according to the SM expectation $$\hat{P} = rac{ ext{number of } H_{ran} ext{ with } p_{min}^{ran} < p_{min}^{data}}{ ext{number of } H_{ran}}$$ - \rightarrow \hat{P}_{data} = significance of p_{min}^{data} - \rightarrow \hat{P}_{data} can be used to compare results of different event class - \rightarrow p_{min} = "5 σ " corresponds to ~ -log₁₀ \hat{P}_{data} = 5-6 - \searrow Smallest $\hat{P}_{data} \rightarrow$ most interresting channel ## Determine the global significance Multiple classes studied, limited statistic: small P values can occur • What is the expectation for P using this method and if we redo an experiment? - → Replace data by many "HERA MC experiments" with the luminosity of the data - → Apply the same algorithm - → P_{MC} → The distribution of P observed in data classes is described by MC experiments ## General search and isolated lepton events Corresponds to the topology of isolated leptons events (W production in SM) #### HERA I, 117 pb-1, mainly e+p → HERA I: ~3% of MC experiments would produce a similar deviation #### HERA II, 178 pb-1, e+p → Deviation less important than in HERA I data μ -j- ν is the most deviating class in e+p for both HERA I and II data ## Sensitivity to new physics - Yest the sensitivity of the method to new physics - Anomalous top production via FCNC - → A decay t → bW would appear mostly in j-j-j, e-j- ν and μ -j- ν - ightharpoonup Evolution of - \log_{10} $\hat{\mathbf{P}}$ as a function of σ_{top} - In j-j-j: $-\log_{10} \hat{P} \sim 2$ for $\sigma_{top} = 0.5$ pb - → From H1 dedicated analysis in hadronic channel: σ_{top} < 0.48 pb at 95% C.L. - $-\log_{10} \hat{P} \ge 3$ for $\sigma_{top} \sim 1.5$ pb ▶ Sensitivity equivalent or slightly lower than dedicated searches #### **Summary** - A model independent search for new physics has been performed using all H1 HERA I+II data - → In total: 455 pb⁻¹ - → All high P_T event topologies systematically investigated - → Good understanding of the detector and SM processes - No very significant deviation observed in e+p or e-p HERA II data - But ... - The most deviating class is μ -j- ν in all e+p data (HERA I and HERA II) - → Corresponds to isolated leptons topology - 1 It is the broadest range signature based search done at a collider