A general search for new phenomena at HERA

H1 Collaboration

DIS 2007
April 16-20, 2007, Munich, Germany

Emmanuel Sauvan

The 2 ways of searches

- Look for predicted signatures of BSM models
 - → Adapt an analysis for each exotic prediction
 - ▲ Larger sensitivity
- Look for deviations to the SM in its tails: investigate all possible high P_T topologies
 - Greater generality
 - → Signature based
 - → Also look for the unexpected
 - → Minimise the probability of missing something
 - Developed by H1 for HERA I data [PLB 602, 14 (2004)]
 - Requires a very good understanding of detector and SM processes

The analysis strategy

- Isolated high P_T particles: e, γ , μ , jet and ν
 - → Tight identification criteria based on detector performances
- A common phase space:
 - → P_Tpart > 20 GeV
 - \rightarrow 10 < θ part < 140 degrees
 - $\rightarrow D_{part} n \varphi > 1$
- Classification of events into exclusive channels (>=2 particles) (e-j, j-j, j- ν , e-j-j, ...)
- Look for possible deviations in Σ P_T and M_{all} distributions
- Determine statistical significance of largest deviations observed

▶ New analysis based on the full H1 HERA II data set: 337 pb⁻¹

SM processes

- → Need simulation of all ep processes
- → Large MC statistic required (multi-particle classes)
- Neutral Current DIS ep o eX

• Charged Current DIS ep o
u X

• Photoproduction $\gamma p \to X$

 \rightarrow QCD processes: O(α_s) + PS

ullet QED Compton $ep o e \gamma X$

• Lepton pair production ep o ell X

• W production $ep \rightarrow eWX$

QED processes: $O(\alpha^2) + PS$

Event yields

▶ Good agreement with SM in most classes

Search for deviations

- ▶ Identify regions of largest deviations between data / SM
- Investigate 1D Σ P_T and M_{all} distributions
- Probability p of up or down fluctuations in each regions:

$$p = \begin{cases} A \int_0^\infty db \, G(b; N_b, \delta N_b) \sum_{i=N_{obs}}^\infty \frac{e^{-b}b^i}{i!} & \text{if } N_{obs} \geq N_b \\ A \int_0^\infty db \, G(b; N_b, \delta N_b) & \sum_{i=0}^{N_{obs}} \frac{e^{-b}b^i}{i!} & \text{if } N_{obs} < N_b \end{cases}$$
 (A = normalisation constant)

Most interresting region:
 p minimum -> p_{min}^{data}

Σ P_T and M_{all} distributions: e+p

- → A systematical scan of all classes
- → Classes with Nb jets >= 4 are not considered

Σ P_T and M_{all} distributions: e-p

- → Some regions with deviations found
- → Are they significant?

Quantify the deviation

- A Quantify the significance of each deviation found
- What is the probability (\hat{P}) to observe somewhere else in the histogram a region with $p < p_{min}^{data}$?
 - \rightarrow Pull random histograms H_{ran} according to the SM expectation

$$\hat{P} = rac{ ext{number of } H_{ran} ext{ with } p_{min}^{ran} < p_{min}^{data}}{ ext{number of } H_{ran}}$$

- \rightarrow \hat{P}_{data} = significance of p_{min}^{data}
- \rightarrow \hat{P}_{data} can be used to compare results of different event class
- \rightarrow p_{min} = "5 σ " corresponds to ~ -log₁₀ \hat{P}_{data} = 5-6
- \searrow Smallest $\hat{P}_{data} \rightarrow$ most interresting channel

Determine the global significance

Multiple classes studied, limited statistic: small P values can occur

• What is the expectation for P using this method and if we redo an experiment?

- → Replace data by many "HERA MC experiments" with the luminosity of the data
- → Apply the same algorithm
- → P_{MC}

→ The distribution of P observed in data classes is described by MC experiments

General search and isolated lepton events

Corresponds to the topology of isolated leptons events
 (W production in SM)

HERA I, 117 pb-1, mainly e+p

→ HERA I: ~3% of MC experiments would produce a similar deviation

HERA II, 178 pb-1, e+p

→ Deviation less important than in HERA I data

 μ -j- ν is the most deviating class in e+p for both HERA I and II data

Sensitivity to new physics

- Yest the sensitivity of the method to new physics
- Anomalous top production via FCNC
 - → A decay t → bW would appear mostly in j-j-j, e-j- ν and μ -j- ν
 - ightharpoonup Evolution of - \log_{10} $\hat{\mathbf{P}}$ as a function of σ_{top}

- In j-j-j: $-\log_{10} \hat{P} \sim 2$ for $\sigma_{top} = 0.5$ pb
 - → From H1 dedicated analysis in hadronic channel: σ_{top} < 0.48 pb at 95% C.L.
- $-\log_{10} \hat{P} \ge 3$ for $\sigma_{top} \sim 1.5$ pb

▶ Sensitivity equivalent or slightly lower than dedicated searches

Summary

- A model independent search for new physics has been performed using all H1 HERA I+II data
 - → In total: 455 pb⁻¹
 - → All high P_T event topologies systematically investigated
 - → Good understanding of the detector and SM processes
- No very significant deviation observed in e+p or e-p HERA II data
- But ...
 - The most deviating class is μ -j- ν in all e+p data (HERA I and HERA II)
 - → Corresponds to isolated leptons topology
- 1 It is the broadest range signature based search done at a collider